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ABSTRACT

In this paper, we are surveying the different ways through which we can access the content of any image. As
processors become increasingly powerful, and memories become increasingly cheaper, the deployment of large
image databases for a variety of applications have now become realizable. Databases of art works, satellite and
medical imagery have been attracting more and more users in various professional fields for example, geography,
medicine, architecture, advertising, design, fashion, and publishing. "Content-based” means that the search will
analyze the actual contents of the image rather than the metadata such as keywords, tags, or descriptions associated
with the image

l. INTRODUCTION
Image retrieval is the processing of searching and retrieving images from a huge dataset. As the images grow
complex and diverse, retrieval the right images becomes a difficult challenge. For centuries, most of the images
retrieval is text-based which means searching is based on those keyword and text generated by human’s
creation.[1] The text-based image retrieval systems only concern about the text described by humans, instead of
looking into the content of images. Images become a mere replica of what human has seen since birth, and this
limits the images retrieval. This may leads to many drawbacks which will be state in related works.

For decades, text in a given language has been set to order, to categorize and to search from, be it manually in the
ancient Bibliotheke, or automatically Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. To
overcome those drawbacks of text-based image retrieval, content-based images retrieval (CBIR) was introduced
[2][3]. With extracting the images features, CBIR perform well than other methods in searching, browsing and
content mining etc.

The need to extract useful information from the raw data becomes important and widely discussed. Furthermore,
clustering technique is usually introduced into CBIR to perform well and easy retrieval. Although many research
improve and discuss about those issues, still many difficulties hasn’t been solved. The rapid growing images
information and complex diversity has build up the bottle neck. Interpretation of what we see is hard to
characterize, and even more so to teach a machine such that any automated organization can be possible. Yet,
over the past decade, ambitious attempts have been made to make machines learn to understand, index and
annotate images representing a wide range of concepts, with much progress.

1. LITERATURE SURVEY
Xianwang et al, [14] have developed a novel framework for low level feature and high level feature. To tackle the
issues in leveraging low-level features (eg. Color) and high-level features (attributes) of clothing. To improve
search quality by using re-ranking approach exploiting clothing attributes, including the type of clothing, sleeves,
patterns, etc. The attributes have better robustness to clothing variations, and carry semantic meanings as high-
level image representations.
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Theo et al, [15] has been proposed from color invariant edges which shape invariant features are computed. Color

and shape invariant method are combined into a unified high-dimensional invariant feature set for the
discriminatory object search.

Lingyang et al, [16] are retrieving the near duplicate images with large area of duplicates region, since the spatial
structure of the near duplicate images could be described by the COP consistency.

Gaurav et al, [17] a reasonably accurate and fast color segmentation technique that leverages the strengths of
region-based and edge-based segmentation. Also, a new parametric relevance feedback algorithm is explicitly
utilizes information about non relevant examples.

Guo-Dong et al, [18] a content based image retrieval for the constrained similarity measure. The constrained
similarity measure takes consideration for the perceptual similarity between images and improves the retrieval
performance.

Issam EI-Naga et al, [19] a learning machine-based framework for modelling human perceptual similarity for
content-based image retrieval. They are evaluated for retrieval of clinical mammograms containing clustered
microcalcifications.

Hao et al, [20] have shown that Online Multiple Kernel Similarity (OMKS) significantly surpasses the state-of-
the-art linear and nonlinear metric learning techniques for image similarity search.

Qianni et al, [21] a strategy for multifeature-based retrieval of history images database. The multifeature fusion
model is a suitable model for feature combination based on multiple query images that are associated with the
keyword in concern.

Hatice et al, [22] a weighting scheme inspired by IR theory, retrieval performance of the CBIR system is better
than the traditional image-level retrieval. Its retrieval accuracy for all seven subtypes. There are two challenging
diseases are inter reading and intra reading semantic variations. Both intra slide semantic variations, and inter
subtype are visual similarities.

Dimitris et al, [23] a scheme involves block-based low level feature are extracted from images to form higher
level clustering of the feature space. An expectation-maximization algorithm is clustering of the feature space that
uses an iterative approach to automatically determine the number of clusters.

Md Mahmudur et al, [24] the probabilistic outputs of a multiclass support vector machine (SVM) classifier. SVM
classifier is used for prediction of the query and database images are exploited. The image category information
is utilized directly to filter out irrelevant images and adjust the feature weights in a linear combination of similarity
matching.

Hayit et al, [25] the medical image retrieval for GMM-KL framework as a localized statistical framework. The
similarity image matching measure for GMM-KL framework combines a continuous and probabilistic and region-
based image representation scheme.

Jorma et al, [26] the self-organizing CBIR system named PicSOM and shown that MPEG-7-defined content
descriptors can be successfully used. To implement relevance feedback, the PicSOM system is based on using
SOMs from the user of the system.

Zhong et al, [27] a novel method for the feature subspace extraction. The progressive learning capability is the
new feedback approach. This approach is based on a Bayesian classifier and treats positive and negative feedback
examples with different strategies. They have proposed a new relevance feedback approach by integrating a
feature subspace extraction process into a Bayesian feedback process in content-based image retrieval.

Lining et al, [28] a geometric optimum experimental design (GOED) a novel active learning method to select
multiple representative samples in the database. The main problem in GOED can be small-sized training data. The
Kernel Hilbert space has the geometric structure of unlabeled samples and to enhance the retrieval performance.
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Igor et al, [30] to represent the information contained in the original images for geometrical constraints of the
trace transform that can be optimized. The dimensionality reduction in terms of the mean and kurtosis value pairs
of frequency coefficients has demonstrated. The results have a very robust set of features in terms of precision.
Mina et al, [31] a medical decision support system. The medical decision making system has been designed with
normal and finding two certain abnormalities. The techniques used to find images with tumor and image of
multiple sclerosis are the gray level co-occurrence matrices (GLCM). The supervised learning method like
principal component analysis (PCA), and support vector machine (SVM) which help in classifying the normal
images, and abnormal images.

Yang et al, [32] have a generalized brain state in a box (gBSB) based hybrid neural network. Using Hybrid neural
network can store and retrieve large-scale patterns combining the pattern decomposition concept and pattern
sequence storage and retrieval.

Esther et al, [33] to retrieve brain image using soft computing technique. The shape features are extracted using
2-D Zernike moment. The soft computing technique of Extreme Learning Machine is used with different distance
metric measures like Euclidean, Quasi Euclidean, City Block, Hamming distance. The Fuzzy Expectation
Maximization Algorithm is used to remove the non-brain portion of the MRI Brain image.

Rajalakshmi et al, [34] a relevance feedback method using a diverse density algorithm is used to improve the
performance of content- based medical image Retrieval. The texture features are extracted based on Haralick
features, Zernike moments, histogram intensity features and run -length features. The hybrid approach of branch
and bound algorithm and artificial bee colony algorithm using brain tumor images.

Ahmed et al, [35] the efficacy of different types of features such as texture, shape and intensity for segmentation
of Posterior- Fossa tumor. The four different techniques like PCA, boosting, KLD and entropy metrics
demonstrate the efficacy of 249 real MRI of ten pediatric patients.

Murala et al, [36] a new image retrieval algorithm for local mesh pattern using biomedical image retrieval. The
significant improvement for retrieval performance LBP with gabor transform and domain methods.

Manjunath, et al, [37] an image retrieval method using gabor texture feature. To measure the similarity of image.
The retrieval performance of the texture is useful for region based retrieval.
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1. CONCLUSION

In past years, content-based image retrieval (CBIR) has been focused on research in image processing, low-level
feature extraction, etc. CBIR systems should provide the semantic gap between low level feature and semantic
retrieval. The method, advantages and disadvantages of the several approaches in content based image retrieval
are discussed. Some other related issues and retrieval performance metrics are also discussed. In future, Humans
aim to use the higher level feature in everyday life. The low level feature image is automatically extracted from
the current computer vision techniques. In a general setting, the low-level features do not have a direct link to the
high-level concepts. Some off-line and on-line processing need for semantic gap. The supervised learning,
unsupervised learning, or the combination of the two is achieved in off-line processing. Neural network, genetic
algorithms, fuzzy logic and clustering are such learning tools needed [39, 40, 41, 42]
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